Object Detection (YOLOv8 / YOLOv11)#

Image

  • On-device AI Object Detection App with ZETIC.MLange (YOLOv8/v11)

  • (Above capture image generated with YOLOv8 demo application)

GitHub repository#

  • We provide YOLOv11 demo application source code for both Android and iOS applications for the YOLOv8 demo. If input model key is changed to YOLOv8, you can experience YOLOv8 also. repository

What is YOLOv11#

  • The YOLOv11 is the latest version of the acclaimed real-time object detection and image segmentation model.

  • YOLOv11 document page by Ultralytics: link

  • Currently, we only support detector mode. We’ll support other features for the YOLOv11 model later.

Step-by-step implementation#

0. Prerequisites#

  • We prepared the model key for the model for you. You can skip to step 2 if you want.

Prepare the YOLO11 model and input sample#

  • Export YOLO11 model

    • You will get yolo11n.onnx model after the following script

    from ultralytics import YOLO
    import torch
    
    # Load a YOLOv11 model
    model = YOLO("yolo11n.pt")
    
    # Export the model
    model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
    
  • Prepare input sample as NumPy array

    • You can use the default sample input that we prepared: link

    • Default input size for yolo11n model

    • Or prepare input from your image file with the below function preprocess_image(...)

    import cv2
    import numpy as np
    
    def preprocess_image(image_path, target_size=(640, 640)):
        img = cv2.imread(image_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, target_size)
        img = img.astype(np.float32) / 255.0
        img = np.transpose(img, (2, 0, 1))
        img = np.expand_dims(img, axis=0)
        return img
    

1. Generate ZETIC.MLange model key#

  • Get your own MLange model key from the model

    • If you want to get your own model key, please get your own model key as below.

        # (1) Get mlange_gen
        $ wget https://github.com/zetic-ai/ZETIC_MLange_document/raw/main/bin/mlange_gen && chmod 755 mlange_gen
    
        # (2) Run mlange_gen 
        $ ./mlange_gen -m yolo11n.onnx -i images.npy
    
        # Expected output
        # ...
        # MLange Model Key : {YOUR_YOLOV8_MODEL_KEY}
        # ...
    

2. Implement ZeticMLangeModel with your model key#

  • We prepared a model key for the demo app: yolo-v11n-test. You can use the model key to try the Zetic.MLange Application.

  • Android app

    • For the detailed application setup, please follow deploy to Android Studio page

    • ZETIC.MLange usage in Java

      • Demo app is written in Java, but you can use Kotlin as well.

      ZeticMLangeModel model = new ZeticMLangeModel(this, "YOUR_YOLOV11_MODEL_KEY");
    
      model.run(inputs);
    
      ByteBuffer[] outputs = model.getOutputBuffers();
    
  • iOS app

    • For the detailed application setup, please follow deploy to XCode page

    • ZETIC.MLange usage in Swift

      let model = ZeticMLangeModel(mlange_model_key)
    
      model.run(yoloModelInput);
    
      let outputs = model.getOutputDataArray()
    

3. Prepare YOLOv8 image feature extractor for Android and iOS#

  • We provide a YOLOv8 feature extractor as an Android and iOS module. This feature extractor can be used for YOLOv11 model.

    • (We checked this image feature extractor works on YOLOv8 and YOLOv11)

    • (The YOLOv8 feature extractor extension will be exposed as an open-source repository soon)

    • You can use your own feature extractor if you have one for YOLOv8 usage

  • For Android

    // (0) Initialize ZeticMLangeFeatureYolov8 with `coco.yaml` for the model
    Yolov8Wrapper yolov8Wrapper = new Yolov8Wrapper(cocoYamlFilePath);
    
    // (1) Preprocess bitmap and get processed float array
    ByteBuffer input = yolov8Wrapper.preprocess(bitmap);
    
    ...
    
    // (2) Postprocess to bitmap
    YoloResult result = yolov8Wrapper.postprocess(outputFloatArray);
    
  • For iOS

    import ZeticMLange
    
    // (0) Initialize ZeticMLangeFeatureYolov8
    let yolov8Wrapper = YOLOv8Wrapper(cocoYamlFileUrl)
    
    // (1) Preprocess UIImage and get processed float array
    let input = yolov8Wrapper.featurePreprocess(imageAddress, width, height, bytesPerRow)
    
    ...
    
    // (2) Postprocess to UIImage
    let result = yolov8Wrapper.featurePostprocess(&outputs[0])
    

Total YOLOv11 Process implementation#

  • For Android

    • Java

      // (0) Initialization
      Yolov8Wrapper yolov8Wrapper = new Yolov8Wrapper(cocoYamlFilePath);
      ZeticMLangeModel model = new ZeticMLangeModel(this, "YOUR_YOLOV8_MODEL_KEY");
      
      // (1) Preprocess image
      ByteBuffer input = yolov8Wrapper.preprocess(bitmap);
      
      // (2) Process YOLOv11 Model
      model.run([input]);
      ByteBuffer[] outputs = model.getOutputBuffers();
      
      // (3) Postprocess to bitmap
      YoloResult result = yolov8Wrapper.postprocess(outputs[0]);
      
  • For iOS

    • iOS

      // (0) Initialization
      let model = ZeticMLangeModel(mlange_model_key)
      let yolov8Wrapper = YOLOv8Wrapper(cocoYamlFileUrl)
      
      // (1) Preprocess image
      let input = yolov8Wrapper.featurePreprocess(imageAddress, width, height, bytesPerRow)
      
      // (2) Process YOLOv11 Model
      yoloModel.run([yoloProcessedData]);
      let outputs = yoloModel.getOutputDataArray()
      
      // (3) Postprocess the output
      let result = yolov8Wrapper.featurePostprocess(&outputs[0])
      

Conclusion#

With ZETIC.MLange, You can easily build your own on-device AI application with NPU utilization. We are going to keep uploading the models to our examples and HuggingFace page. Please keep noticed and contact us for the collaborations!