Inference Mode Select#
ZETIC.MLange
provides several custom modes for model inference.
Criteria for selecting model inference mode#
Default (Optimized)
Selects the optimal model considering both accuracy and speed.
Speed First
The fastest mode with minimum latency.
Accuracy First
The most accurate mode based on the maximum SNR score.
API Example#
Android(Kotlin)#
// Default: Model Load (Speed first, but SNR above 20.f)
private val model_default = ZeticMLangeModel(context, PERSONAL_KEY, MODEL_KEY)
// Mode 1: Speed First
private val model_fast = ZeticMLangeModel(context, PERSONAL_KEY, MODEL_KEY, ModelMode.RUN_SPEED)
// Mode 2: Accuracy First Mode
private val model_accurate = Zetic LangeModel(context, PERSONAL_KEY, MODEL_KEY, ModelMode.RUN_ACCURACY)
iOS (Swift)#
// Run Mode Default Model Load (Speed first, but SNR above 28.1)
let model_default = try ZeticMLangeModel(PERSONAL_KEY, MODEL_KEY)
// Mode 1: Speed First
let model_fast = try ZeticMLangeModel(PERSONAL_KEY, MODEL_KEY, ModelMode.RUN_SPEED)
// Mode 2: Accuracy First
let model_accurate = try ZeticMLangeModel(PERSONAL_KEY, MODEL_KEY, ModelMode.RUN_ACCURACY)
Example Case#
From below benchmark report, we select automatically and relatively for the each of the target device
Contact us#
Collaborations or update request are always welcome to us! Please contact us via contact