(Beta) ZETIC.MLange LLM Model#
Overview#
ZETIC.MLange LLM Model provides an abstraction layer for LLM (Large Language Model) implementations using ZETIC.ai’s infrastructure. It offers a developer-friendly interface for downloading and running LLM models on mobile devices, managing model downloads.
Model Support#
Current tested models include:
DeepSeek-R1-Distill-Qwen-1.5B-F16
TinyLlama-1.1B-Chat-v1.0
Model compatibility depends on device capacity.
[Performance and Latency section to be added]
Core Concept#
Backend Abstraction#
Supports multiple LLM backends including LLaMA.cpp
Handles model initialization and runtime management
Provides unified interface across different backend implementations
API Reference#
Initialization#
init(personalKey: String, modelKey: String)
Downloads device-appropriate model using prepared personal key and model key
Initializes LLM model with proper backend
Conversation#
run(prompt: String)
Starts conversation with provided prompt
waitForNextToken(): String
Returns next generated token, empty string indicates completion
Implement ZETIC.LLM.Model to your project#
Prerequisites#
[Model key generation section to be added]
We prepared a model key for the demo app:
deepseek-r1-distill-qwen-1.5b-f16
. You can use the model key to try the ZETIC.LLM.MLange Application.Android app
For the detailed application setup, please follow
deploy to Android Studio
pageZETIC.LLM.MLange usage in
Kotlin
val model = ZeticMLangeLLMModel(this, "PERSONAL_KEY", "deepseek-r1-distill-qwen-1.5b-f16") model.run("prompt") while (true) { val token = model.waitForNextToken() if (token == "") break // add token to your chat bubble text of the ai agent }
iOS app
For the detailed application setup, please follow
deploy to XCode
pageZETIC.LLM.MLange usage in
Swift
let model = ZeticMLangeLLMModel("PERSONAL_KEY", "deepseek-r1-distill-qwen-1.5b-f16") model.run("prompt") while true { let token = model.waitForNextToken() if token == "" { break } // add token to your chat bubble text of the ai agent }
Screenshots#
