Face Landmark
Build on-device AI face landmark detection applications with ZETIC.MLange
On-device AI Face Landmark App with ZETIC.MLange
We provide Face Landmark demo application source code for both Android and iOS.
What is Face Landmark?
The Face Landmark model in Google's MediaPipe is a highly efficient machine learning model used for real-time face detection and landmark extraction.
- Official documentation: Face Landmarker - Google AI
Model Pipelining
For accurate use of the face landmark model, it is necessary to pass an image of the correct facial area to the model. To accomplish this, we construct a pipeline with the Face Detection model:
- Face Detection: Use the Face Detection model to accurately detect face regions in the image. Extract that part of the original image using the detected face region information.
- Face Landmark: Input the extracted face image into the Face Landmark model to analyze facial landmarks.
Step-by-step Implementation
Prerequisites
Prepare the Face Detection and Face Landmark models from GitHub and convert them to ONNX format.
Face Detection model:
pip install tf2onnx
python -m tf2onnx.convert --tflite face_detection_short_range.tflite --output face_detection_short_range.onnx --opset 13Face Landmark model:
pip install tf2onnx
python -m tf2onnx.convert --tflite face_landmark.tflite --output face_landmark.onnx --opset 13Generate ZETIC.MLange Model
If you want to generate your own model, you can upload the model and input with MLange Dashboard,
or use CLI:
zetic gen -p $PROJECT_NAME -i input.npy face_detection_short_range.onnxImplement ZeticMLangeModel
We prepared model keys for the demo app: face_detection and face_landmark. You can use these model keys to try the ZETIC.MLange Application.
For detailed application setup, please follow the Deploy to Android Studio guide.
val faceLandmarkModel = ZeticMLangeModel(this, "face_landmark")
faceLandmarkModel.run(inputs)
val outputs = faceLandmarkModel.outputBuffersFor detailed application setup, please follow the Deploy to Xcode guide.
let faceLandmarkModel = ZeticMLangeModel("face_landmark")
faceLandmarkModel.run(inputs)
let outputs = faceLandmarkModel.getOutputDataArray()Prepare Face Landmark feature extractor
We provide a Face Landmark feature extractor as an Android and iOS module.
The Face Landmark feature extractor extension will be released as an open-source repository soon.
// (0) Initialize Face Landmark wrapper
val feature = FaceLandmarkWrapper()
// (1) Preprocess bitmap and get processed float array
val inputs = feature.preprocess(bitmap)
// ... run model ...
// (2) Postprocess to bitmap
val resultBitmap = feature.postprocess(outputs) import ZeticMLange
// (0) Initialize Face Landmark wrapper
let feature = FaceLandmarkWrapper()
// (1) Preprocess UIImage and get processed float array
let inputs = feature.preprocess(image)
// ... run model ...
// (2) Postprocess to UIImage
let resultBitmap = feature.postprocess(&outputs)Complete Face Landmark Pipeline Implementation
The complete implementation requires pipelining two models: Face Detection followed by Face Landmark.
Step 1: Face Detection
// (0) Initialize face detection model
val faceDetectionModel = ZeticMLangeModel(this, "face_detection")
val faceDetection = FaceDetectionWrapper()
// (1) Preprocess image
val faceDetectionInputs = faceDetection.preprocess(bitmap)
// (2) Run face detection model
faceDetectionModel.run(faceDetectionInputs)
val faceDetectionOutputs = faceDetectionModel.outputBuffers
// (3) Postprocess to get face regions
val faceDetectionPostprocessed = faceDetection.postprocess(faceDetectionOutputs)Step 2: Face Landmark
// (0) Initialize face landmark model
val faceLandmarkModel = ZeticMLangeModel(this, "face_landmark")
val faceLandmark = FaceLandmarkWrapper()
// (1) Preprocess with detected face regions
val faceLandmarkInputs = faceLandmark.preprocess(bitmap, faceDetectionPostprocessed)
// (2) Run face landmark model
faceLandmarkModel.run(faceLandmarkInputs)
val faceLandmarkOutputs = faceLandmarkModel.outputBuffers
// (3) Postprocess to get landmarks
val faceLandmarkPostprocessed = faceLandmark.postprocess(faceLandmarkOutputs)Step 1: Face Detection
// (0) Initialize face detection model
let faceDetectionModel = ZeticMLangeModel("face_detection")
let faceDetection = FaceDetectionWrapper()
// (1) Preprocess image
let faceDetectionInputs = faceDetection.preprocess(bitmap)
// (2) Run face detection model
faceDetectionModel.run(faceDetectionInputs)
let faceDetectionOutputs = faceDetectionModel.getOutputDataArray()
// (3) Postprocess to get face regions
let faceDetectionPostprocessed = faceDetection.postprocess(&faceDetectionOutputs)Step 2: Face Landmark
// (0) Initialize face landmark model
let faceLandmarkModel = ZeticMLangeModel("face_landmark")
let faceLandmark = FaceLandmarkWrapper()
// (1) Preprocess with detected face regions
let faceLandmarkInputs = faceLandmark.preprocess(bitmap, faceDetectionPostprocessed)
// (2) Run face landmark model
faceLandmarkModel.run(faceLandmarkInputs)
let faceLandmarkOutputs = faceLandmarkModel.getOutputDataArray()
// (3) Postprocess to get landmarks
let faceLandmarkPostprocessed = faceLandmark.postprocess(&faceLandmarkOutputs)Conclusion
Discover just how easy and lightning-fast building your own on-device AI applications can be with ZETIC.MLange! Harness the full power of mobile NPUs for unparalleled performance and speed.
We're continually adding new models to our examples and HuggingFace page.
Stay tuned and contact us to collaborate on exciting projects!