ZETIC.MLange

Android

Deploy your On-device AI application to Android Studio

Deploy your own On-device AI Android application easily. MLange supports both Kotlin and Java implementations.

Prerequisites

Before you begin, make sure you have:

Step-by-step Guide

Add ZeticMLange dependency

build.gradle

    android {
        ...
        packagingOptions {
            jniLibs {
                useLegacyPackaging true
            }
        }
    }

    dependencies {
        implementation 'com.zeticai.mlange:mlange:+'
    }

build.gradle.kts

    android {
        ...
        packaging {
            jniLibs {
                useLegacyPackaging = true
            }
        }
    }

    dependencies {
        implementation("com.zeticai.mlange:mlange:+")
    }

Initialize and run ZeticMLangeModel

// (1) Load Zetic MLange model
val model = ZeticMLangeModel(CONTEXT, PERSONAL_KEY, PROJECT_NAME)

// (2) Prepare model inputs
val inputs: Array<Tensor> = // Prepare your inputs

// (3) Run and get output tensors of the model
val outputs = model.run(inputs)
// (1) Load Zetic MLange model
ZeticMLangeModel model = new ZeticMLangeModel(CONTEXT, PERSONAL_KEY, PROJECT_NAME);

// (2) Prepare model inputs
Tensor[] inputs = // Prepare your inputs;

// (3) Run and get output buffers of the model
Tensor[] outputs = model.run(inputs);

Sample Application

Please refer to ZETIC MLange Apps repository for complete sample applications and more details.